Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0613820170270030370
Journal of Life Science
2017 Volume.27 No. 3 p.370 ~ p.381
Emerging Roles of CTD Phosphatases
Kim Young-Jun

Abstract
Protein dephosphorylation is important for cellular regulation, which is catalyzed by protein phosphatases. Among protein phosphatases, carboxy-terminal domain (CTD) phosphatases are recently emerging and new functional roles of them have been revealed. There are 7 CTD phosphatases in human genome, which are composed of CTD phosphatase 1 (CTDP1), CTD small phosphatase 1 (CTDSP1), CTD small phosphatase 2 (CTDSP2), CTD small phosphatase-like (CTDSPL), CTD small phosphatase-like 2 (CTDSPL2), CTD nuclear envelope phosphatase (CTDNEP1), and ubiquitin-like domain containing CTD phosphatase 1 (UBLCP1). CTDP1 dephosphorylates the second phosphor-serine of CTD of RNA polymerase II (RNAPII), while CTDSP1, STDSP2, and CTDSPL dephosphorylate the fifth phosphor-serine of CTD of RNAPII. In addition, CTDSP1 dephosphorylates new substrates such as mothers against decapentaplegic homologs (SMADs), cell division cycle-associated protein 3 (CDCA3), Twist1, tumor-suppressor protein promyelocytic leukemia (PML), and c-Myc. CTDP1 is related to RNA polymerase II complex recycling, mitosis regulation and cancer cell growth. CTDSP1, CTDSP2 and CTDSPL are related to transcription factor recruitment, tumor suppressor function and stem cell differentiation. CTDNEP1 dephosphorylates LIPIN1 and is related to neural tube formation and nuclear envelope formation. CTDSPL2 is related to hematopoietic stem cell differentiation. UBLCP1 dephosphorylates 26S proteasome and is related to nuclear proteasome regulation. In conclusion, noble roles of CTD phosphatases are emerging through recent researches and this review is intended to summarize emerging roles of CTD phosphatases.
KEYWORD
CTD phosphatase, dephosphorylation, phosphorylation, protein phosphatase, stem cell differentiation
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)